Randomized Interior Point methods for Sampling and Optimization

نویسنده

  • Hariharan Narayanan
چکیده

We present a Markov Chain, “Dikin walk”, for sampling from a convex body equipped with a self-concordant barrier. This Markov Chain corresponds to a natural random walk with respect to a Riemannian metric defined using the Hessian of the barrier function. For every convex set of dimension n, there exists a self-concordant barrier whose self-concordance parameter is O(n). Consequently, a rapidly mixing Markov Chain of the kind we describe can be defined (but not always be efficiently implemented) on any convex set. We use these results to design an algorithm consisting of a single random walk for optimizing a linear function on a convex set. Using results of Barthe [2] and Bobkov and Houdré [5], on the isoperimetry of products of weighted Riemannian manifolds, we obtain sharper upper bounds on the mixing time of a Dikin walk on products of convex sets than the bounds obtained from a direct application of the Localization Lemma. The results in this paper generalize previous results of [12] from polytopes to spectrahedra and beyond, and improve upon those results in a special case when the convex set is a direct product of lower dimensional convex sets. This Markov Chain like the chain described in [12] is affine-invariant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A full Nesterov-Todd step interior-point method for circular cone optimization

In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization

  We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...

متن کامل

Vehicle Interior Vibration Simulation-a Tool for Engine Mount Optimization

By new advancements in vehicle manufacturing vehicle quality evaluation and assurance has become a more critical issue. In present work, the vibration transfer path analysis and vibration path ranking of a car interior has been performed. The method is similar to classical multilevel TPA methods but has distinct differences. The method is named VIVS which stands for Vehicle Interior Vibratio...

متن کامل

An infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step

An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0911.3950  شماره 

صفحات  -

تاریخ انتشار 2009